On graphs whose spectral radius

نویسندگان

  • Renee Woo
  • Arnold Neumaier
چکیده

The structure of graphs whose largest eigenvalue is bounded by 3 2 √ 2 (≈ 2.1312) is investigated. In particular, such a graph can have at most one circuit, and has a natural quipu structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

Ordering the oriented unicyclic graphs whose skew-spectral radius is bounded by 2

*Correspondence: [email protected] 2School of Science, Zhejiang A&F University, Hangzhou, 311300, China Full list of author information is available at the end of the article Abstract Let S(G ) be the skew-adjacency matrix of an oriented graph G with n vertices, and let λ1,λ2, . . . ,λn be all eigenvalues of S(G ). The skew-spectral radius ρs(G ) of G is defined as max{|λ1|, |λ2|, . . . , |λn|}....

متن کامل

Ordering of the signless Laplacian spectral radii of unicyclic graphs

For n ≥ 11, we determine all the unicyclic graphs on n vertices whose signless Laplacian spectral radius is at least n− 2. There are exactly sixteen such graphs and they are ordered according to their signless Laplacian spectral radii.

متن کامل

On the Spectral Radius of Graphs with Cut Vertices

The graphs in this paper are simple. The spectral radius, \(G), of a graph G is the largest eigenvalue of its adjacency matrix A(G). For results on the spectral radii of graphs, the reader is referred to [3, 4, 6] and the references therein. When G is connected, A(G) is irreducible and by the Perron Frobenius Theorem, e.g., [1], the spectral radius is simple and has a unique (up to a multiplica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007